1) Simplifique as frações, admitindo que os
denominadores sejam diferentes de zero.
a) (3a – 3b) / 12 =
b) (2x + 4y) /2a =
c) (3x – 3) / (4x – 4) =
d) (3x – 3) / ( 3x + 6) =
e) (5x + 10) / 5x =
a) (3a – 3b) / 12 =
b) (2x + 4y) /2a =
c) (3x – 3) / (4x – 4) =
d) (3x – 3) / ( 3x + 6) =
e) (5x + 10) / 5x =
2) Determine o m.m.c dos monômios:
a) 2ab e 3abc²
b) 7b e 21b³x
c) 3x²y e 6xy²
d) 4xy e 5x²z
e) 4x²y, 6x³ e 2x
a) 2ab e 3abc²
b) 7b e 21b³x
c) 3x²y e 6xy²
d) 4xy e 5x²z
e) 4x²y, 6x³ e 2x
3) Efetue as operações indicadas:
a) (5x/7y) + (3x/7y) =
b) (3x/7y) – (x/7y) =
c) (5/9x) – (1/9x) =
d) (4x/7y) – (x/7y) =
e) (5x/3m)+ (2x-9/3m) =
a) (5x/7y) + (3x/7y) =
b) (3x/7y) – (x/7y) =
c) (5/9x) – (1/9x) =
d) (4x/7y) – (x/7y) =
e) (5x/3m)+ (2x-9/3m) =
4) Efetue as operações indicadas:
a) 10/x – 25/3x =
b) 3/2xy + 1/xy =
c) 5y/3x + 3y/2x =
d) 7/x² + 5/x =
e) 3/2x² - 8/x =
a) 10/x – 25/3x =
b) 3/2xy + 1/xy =
c) 5y/3x + 3y/2x =
d) 7/x² + 5/x =
e) 3/2x² - 8/x =
5) Efetue as operações indicadas
a) 4 / (x + 1) + 2 /(x – 1) =
b) 5x / ( x + 2) - 3x / ( x – 2)
c) 3/x – 2/(x + 1) =
d) 4/x + 5/(x -2) =
e) 2/(x+2) – 1/(x -1) =
a) 4 / (x + 1) + 2 /(x – 1) =
b) 5x / ( x + 2) - 3x / ( x – 2)
c) 3/x – 2/(x + 1) =
d) 4/x + 5/(x -2) =
e) 2/(x+2) – 1/(x -1) =
6) Efetue as multiplicações
a) 3 a / x . y/2 =
b) 2x/5 . 4a/x =
c) 3/a .5y/y =
d) 2 a/x . 5b / y =
a) 3 a / x . y/2 =
b) 2x/5 . 4a/x =
c) 3/a .5y/y =
d) 2 a/x . 5b / y =
7) Calcule os quocientes
a) 2a/ b : x/y =
b) 3x/4 : 5y/7 =
c) x/2 : ax/8 =
d) 5x/a : a/ xy =
e) 3x/2 : 6x²/4 =
a) 2a/ b : x/y =
b) 3x/4 : 5y/7 =
c) x/2 : ax/8 =
d) 5x/a : a/ xy =
e) 3x/2 : 6x²/4 =
8) Calcule as Potências:
a) (a/5m)² =
b) (7x/a)² =
c) (3x/a²)² =
d) (2a³/3x²)³ =
e) (2a²/x³)³ =
a) (a/5m)² =
b) (7x/a)² =
c) (3x/a²)² =
d) (2a³/3x²)³ =
e) (2a²/x³)³ =
Nenhum comentário:
Postar um comentário